Warning: A non-numeric value encountered in /home/customer/www/meccanicavga.com/public_html/wp-content/themes/Divi/functions.php on line 5841

EDM

Electric discharge machining (EDM), sometimes colloquially also referred to as spark machining, spark eroding, burning, die sinking, wire burning or wire erosion, is a manufacturing process whereby a desired shape is obtained using electrical discharges (sparks). Material is removed from the workpiece by a series of rapidly recurring current discharges between two electrodes, separated by a dielectric liquid and subject to an electric voltage. One of the electrodes is called the tool-electrode, or simply the ‘tool’ or ‘electrode’, while the other is called the workpiece-electrode, or ‘workpiece’.

Two Russian scientists, B. R. Lazarenko and N. I. Lazarenko, were tasked in 1943 to investigate ways of preventing the erosion of tungsten electrical contacts due to sparking. They failed in this task but found that the erosion was more precisely controlled if the electrodes were immersed in a dielectric fluid. This led them to invent an EDM machine used for working difficult-to-machine materials such as tungsten.

When the distance between the two electrodes is reduced, the intensity of the electric field in the volume between the electrodes becomes greater than the strength of the dielectric (at least in some points), which breaks, allowing current to flow between the two electrodes. This phenomenon is the same as the breakdown of a capacitor (condenser) As a result, material is removed from both the electrodes. Once the current flow stops (or it is stopped – depending on the type of generator), new liquid dielectric is usually conveyed into the inter-electrode volume enabling the solid particles (debris) to be carried away and the insulating properties of the dielectric to be restored. Adding new liquid dielectric in the inter-electrode volume is commonly referred to as flushing. Also, after a current flow, a difference of potential between the two electrodes is restored to what it was before the breakdown, so that a new liquid dielectric breakdown can occur.

Electrical discharge machining is a machining method primarily used for hard metals or those that would be very difficult to machine with traditional techniques. EDM typically works with materials that are electrically conductive, although methods for machining insulating ceramics. Ideally, EDM can be seen as a series of breakdown and restoration of the liquid dielectric in-between the electrodes. However, caution should be exerted in considering such a statement because it is an idealized model of the process, introduced to describe the fundamental ideas underlying the process. Yet, any practical application involves many aspects that may also need to be considered. For instance, the removal of the debris from the inter-electrode volume is likely to be always partial. Thus the electrical proprieties of the dielectric in the inter-electrodes volume can be different from their nominal values and can even vary with time. The control system of the electrode may fail to react quickly enough to prevent the two electrodes (tool and workpiece) from coming into contact, with a consequent short circuit. This is unwanted because a short circuit contributes to material removal differently from the ideal case. The flushing action can be inadequate to restore the insulating properties of the dielectric so that the current always happens in the point of the inter-electrode volume (this is referred to as arcing), with a consequent unwanted change of shape (damage) of the tool-electrode and workpiece.

The presence of these small craters on the tool results in the gradual erosion of the electrode. This erosion of the tool-electrode is also referred to as wear. Strategies are needed to counteract the detrimental effect of the wear on the geometry of the workpiece. One possibility is that of continuously replacing the tool-electrode during a machining operation. This is what happens if a continuously replaced wire is used as electrode. In this case, the correspondent EDM process is also called wire EDM. The tool-electrode can also be used in such a way that only a small portion of it is actually engaged in the machining process and this portion is changed on a regular basis. This is, for instance, the case when using a rotating disk as a tool-electrode. The corresponding process is often also referred to as EDM grinding.

Difficulties have been encountered in the definition of the technological parameters that drive the process.

Two broad categories of generators, also known as power supplies, are in use on EDM machines commercially available: the group based on RC circuits and the group based on transistor controlled pulses

In the first category, the main parameters to choose from at setup time are the resistance(s) of the resistor(s) and the capacitance(s) of the capacitor(s). In an ideal condition these quantities would affect the maximum current delivered in a discharge which is expected to be associated with the charge accumulated on the capacitors at a certain moment in time. Little control, however, is expected over the time duration of the discharge, which is likely to depend on the actual spark-gap conditions (size and pollution) at the moment of the discharge. The RC circuit generator can allow the user to obtain short time durations of the discharges more easily than the pulse-controlled generator, although this advantage is diminishing with the development of new electronic components. Also, the open circuit voltage (i.e. the voltage between the electrodes when the dielectric is not yet broken) can be identified as steady state voltage of the RC circuit.

In generators based on transistor control, the user is usually able to deliver a train of pulses of voltage to the electrodes. Each pulse can be controlled in shape, for instance, quasi-rectangular. In particular, the time between two consecutive pulses and the duration of each pulse can be set. The amplitude of each pulse constitutes the open circuit voltage. Thus, the maximum duration of discharge is equal to the duration of a pulse of voltage in the train. Two pulses of current are then expected not to occur for a duration equal or larger than the time interval between two consecutive pulses of voltage.

The maximum current during a discharge that the generator delivers can also be controlled. Because other sorts of generators may also be used by different machine builders, the parameters that may actually be set on a particular machine will depend on the generator manufacturer. The details of the generators and control systems on their machines are not always easily available to their user. This is a barrier to describing unequivocally the technological parameters of the EDM process. Moreover, the parameters affecting the phenomena occurring between tool and electrode are also related to the controller of the motion of the electrodes.

Source Wikipedia