Bushing

A bushing, also known as a bush, is an independent plain bearing that is inserted into a housing to provide a bearing surface for rotary applications; this is the most common form of a plain bearing. Common designs include solid (sleeve and flanged), split, and clenched bushings. A sleeve, split, or clenched bushing is only a “sleeve” of material with an inner diameter (ID), outer diameter (OD), and length. The difference between the three types is that a solid sleeved bushing is solid all the way around, a split bushing has a cut along its length, and a clenched bearing is similar to a split bushing but with a clench across the cut. A flanged bushing is a sleeve bushing with a flange at one end extending radially outward from the OD. The flange is used to positively locate the bushing when it is installed or to provide a thrust bearing surface.

A linear bushing is not usually pressed into a housing, but rather secured with a radial feature. Two such examples include two retaining rings, or a ring that is molded onto the OD of the bushing that matches with a groove in the housing. This is usually a more durable way to retain the bushing, because the forces acting on the bushing could press it out.

The thrust form of a bushing is conventionally called a thrust washer.

Two-piece plain bearings, known as full bearings in industrial machinery,are commonly used for larger diameters, such as crankshaft bearings. The two halves are called shells. There are various systems used to keep the shells located. The most common method is a tab on the parting line edge that correlates with a notch in the housing to prevent axial movement after installation. For large, thick shells a button stop or dowel pin is used. The button stop is screwed to the housing, while the dowel pin keys the two shells together. Another less common method uses a dowel pin that keys the shell to the housing through a hole or slot in the shell.

The distance from one parting edge to the other is slightly larger than the corresponding distance in the housing so that a light amount of pressure is required to install the bearing. This keeps the bearing in place as the two halves of the housing are installed. Finally, the shell’s circumference is also slightly larger than the housing circumference so that when the two halves are bolted together the bearing crushes slightly. This creates a large amount of radial force around the entire bearing which keeps it from spinning. It also forms a good interface for heat to travel out of the bearings into the housing.

Plain bearings must be made from a material that is durable, low friction, low wear to the bearing and shaft, resistant to elevated temperatures, and corrosion resistant. Often the bearing is made up of at least two constituents, where one is soft and the other is hard. The hard constituent supports the load while the soft constituent supports the hard constituent. In general, the harder the surfaces in contact the lower the coefficient of friction and the greater the pressure required for the two to seize.

A plain bearing (in railroading sometimes called a solid bearing) is the simplest type of bearing, comprising just a bearing surface and no rolling elements. Therefore the journal (i.e., the part of the shaft in contact with the bearing) slides over the bearing surface. The simplest example of a plain bearing is a shaft rotating in a hole. A simple linear bearing can be a pair of flat surfaces designed to allow motion; e.g., a drawer and the slides it rests on or the ways on the bed of a lathe.

Plain bearings, in general, are the least expensive type of bearing. They are also compact and lightweight, and they have a high load-carrying capacity.

The design of a plain bearing depends on the type of motion the bearing must provide. The three types of motions possible are:

  • Journal (friction, radial or rotary) bearing: This is the most common type of plain bearing; it is simply a shaft rotating in a bearing. In locomotive and railroad car applications a journal bearing specifically referred to the plain bearing once used at the ends of the axles of railroad wheel sets, enclosed by journal boxes.
  • Linear bearing: This bearing provides linear motion; it may take the form of a circular bearing and shaft or any other two matching surfaces (e.g., a slide plate).
  • Thrust bearing: A thrust bearing provides a bearing surface for forces acting axial to the shaft.

Integral plain bearings are built into the object of use. It is a hole that has been prepared into a bearing surface. Industrial integral bearings are usually made from cast iron or babbitt and a hardened steel shaft is used in the bearing.

Integral bearings are not as common because bushings are easy to accommodate and can be replaced if necessary. Depending on the material, an integral bearing may be less expensive but it cannot be replaced. If an integral bearing wears out then the item may be replaced or reworked to accept a bushing. Integral bearings were very common in 19th-century machinery, but became progressively less common as interchangeable manufacture permeated the industry. An example of a common integral plain bearing is the hinge, which is both a thrust bearing and a journal bearing.

Source Wikipedia